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Synopsis 

Calculations have been carried out, based on Flory-Huggins solution theory, to analyze the 
behavior of the ternary nonsolvent-solvent-polymer phase diagram for typical membrane- 
forming systems. Consideration is given to the behavior of the spinodal as well as binodal 
curves, tie-line slopes, and critical points as a function of various parameters, most especially 
those related to the concentration dependency of the interaction parameters. Implications 
regarding membrane structure formation are discussed, and the suitability of different func- 
tional forms for the interaction parameter concentration dependence is also analyzed. 

The net result of these calculations is to demonstrate the importance of the various param- 
eters in controlling the phasediagram behavior and particularly to show the critical role of 
the concentration dependence of the solvent-polymer interaction parameter in affecting the 
nature of the miscibility gap. 

INTRODUCTION 
Since the invention of the asymmetric membrane by Loeb and Sourira- 

jan, membrane separation processes have attracted considerable commer- 
cial interest. Asymmetric membranes are generally prepared by phase 
inversion techniques,2 the principal steps of which involve casting of a thin 
film of homogeneous polymer solution onto a suitable substrate, followed 
by quenching in a nonsolvent bath to precipitate the membrane film. In 
some cases, the nonsolvent quench is preceded by a short evaporation period; 
however, this step is not necessary to obtain an asymmetric structure.3 The 
precipitated film may also be heat treated to densify the structure. 

The principal structure-forming processes occur during the quenching 
step during which solvent-nonsolvent exchange occurs accompanied by 
various phase transformations. It seems clear, therefore, that mathematical 
models for this process should address both the thermodynamic and kinetic 
aspects of the system. The thermodynamics involves construction of the 
complete ternary phase diagram for the nonsolvent-solvent-polymer sys- 
tem (NS-S-P) and evaluation of the effects of the phase diagram character- 
istics on the formation of a given membrane structure. The kinetic aspect 
of the modeling involves the construction of a proper diffusion equation 
formalism for the mass transfer which would enable calculation of fluxes 
and concentration profiles during the precipitation processes. In this paper, 
we shall be concerned with an assessment of the thermodynamics of the 
ternary NS-S-P system. 

Early studies of ternary NS-S-P systems were limited largely by the re- 
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strictive assumptions needed to reduce the complexity of the phase diagram 
calculations. For example, Scott5 employed restraints on the interaction 
parameters, such as treating the NS-S as a single fluid or assuming complete 
incompatibility of the nonsolvent and polymer. In other cases, assumptions 
were made regarding equality of the NS-S and S-P interaction parameters 
and neglect of the NS-P interaction parameter, or infinite molecular weight 
was assumed. Krigbaum and Carpenter, and later Suh and Liou, assumed 
that the polymer concentration in the dilute liquid phase could be neglected, 
which can be reasonable for some cases; however, they calculated specific 
combinations of compositions such as R = ( + l , A / + 2 . A )  / (+ l ,B /+2 ,B) ,  (where 
the +'s are volume fractions and the subscripts refer to the nonsolvent (11, 
solvent (21, and concentrated phase A or dilute phase B rather than to the 
entire phase diagram. Further, more detailed summaries of the earlier work 
can be found in Tompa.8 

A more complete series of calculations of membrane-forming systems has 
recently been published by Altena and  smolder^,^ in which comparisons 
were made of binodal curves calcualted using Flory-Huggins theory and 
experimental cloud-point measurements. Their calculations dealt mainly 
with binodal curves and assumed a concentration dependency only for the 
nonsolvent-solvent pair, treating the other two as constants. Because their 
primary concern was with comparisons to miscibility gap data, analysis of 
the characteristics of the phase diagrams for a wide range of parameter 
sets was not attempted. In a number of membrane formation m o d e l ~ , ~ J ~ J l  
the region of complete instability, i.e., spinodal, plays an  important role. 
In addition, a large number of experimental studies have shown that sol- 
vent-polymer binary interaction parameters can in fact exhibit strong con- 
centration dependencies. I2-l6 Such behavior we feel can have an  important 
bearing on the understanding of both the phase separation and structure 
formation processes in membrane formation. Our aim therefore has been 
to consider rigorously all aspects of NS-S-P phase diagram behavior (i.e., 
the spinodal as well as binodal curves, tie-line slopes, and critical points) 
and the effects of variations of the interaction parameters on the phase 
diagram characteristics as well as their relevance of membrane formation. 
The suitability of different functional forms for the concentration depend- 
ency has also been considered. In our calculations the polymer is assumed 
to be monodisperse. 

DEVELOPMENT OF EQUATIONS 

Our description of the thermodynamics of the NS-S-P system is based on 
the well-established Flory-Huggins theory. Although the more recently 
developed corresponding states or equation-of-state methods are, in prin- 
cipal, more rigorous, their utility is severely restricted by the increased 
complexity of the calculations and limited data base. Their use has also 
generally been limited to the description of binary systems with rare ex- 
tension to the ternary case.2o In order to obtain better agreement with 
experimental data, Flory-Huggins theory can be empirically extended 
through use of concentration-dependent interaction parameters g,, . This 
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has been the preferred form in our calculations. Thus, for the Gibbs free 
energy of mixing one has: 21,22 

In eq. (11, ni are moles, and the quantities u1 and u p  are given by u2 = $ 2 /  

<$1 + $ 2 )  and u1 = $1/($1 + $2).  The subscripts refer to nonsolvent (l), 
solvent (21, and polymer (3). The suggested ternary correction term has 
been omitted because its inclusion introduces an excessive number of pa- 
rameters and there are no data available to evaluate the correction term 
for membrane-forming systems. Use of the definition for the chemical po- 

. A p i  a ahGM 
tential: - = - (--- leads to the following expressions: 

RT ani RT 

In eqs. (2) to (4), v i  represents the pure molar volume of species i. Solution 
for the binodal curve requires: 
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subject to the material balance constraints, X 4 t , A  = X 4 , ,  = 1. Subscripts 
A and B refer to the polymer-rich and dilute phases, respectively. 

Selection of one of the compositions as an independent variable leaves 
five coupled nonlinear algebraic equations to be solved for the individual 
tie lines. 

Analysis of the limit of the unstable region is also of importance in 
understanding the phase separation behavior of membrane-forming sys- 
tems. Thus the spinodal can be evaluated from the relation for ternary 
systems:8 

G23 G33 = (G23)2 (6) 

where G ,  = ( ~ ~ ~ ) v r e f ,  - and vref is the molar volume of the reference 

component, which in our case we take to be component 1. 
From the relationship for dGM (on a unit-volume basis), one has: 

AP3 A P 1  

Thus from eqs. (2) to (4), the following expressions result: 

1 1 
- l n 4 1  + - -  
V 1  V 2  

1 
V 1  

- 
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From the last two equations one can derive the necessary expressions for 
the spinodal.* 

To calculate the spinodal curve, one of the compositions is chosen as the 
independent variable which, in conjunction with the material balance, 
Z + i  = 1, results in a single nonlinear equation to be solved. 

The critical point for a ternary system is given by:8 

For the special case of constant gij, eq. (14) reduces to: 

METHOD OF COMPUTATION 

Reported methods for calculating phase diagrams in ternary systems have 
generally been based on a least-squares procedure for minimizing a suitably 
chosen objective f ~ n c t i o n . ~ , ~ ~ - ~ ~  In our case we have used ZFi2 as our objective 
function, where 

Fi = ( A P ~ , ~  - A P ~ , ~ ) / R T  i = 1,2,3 (16a) 

* For constant g,, and g,, these equations should simplify to the expressions given by eqs. 
(8) to (10) of Ref. (9). Although this is true for the Gzz expression, our expressions yield terms 

dgiz in - and * for GZ3 and GB which differ from those of (9). The source of this discrepancy 

is not known. 
duz duzz 
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Subroutine ZSCNT from the IMSL library was employed, which uses only 
chemical potential expressions for input. A serious complication in the 
numerical calculation of the binodal is the existence of a trivial solution, 
where + ( A  = +i,B.  As a means for overcoming this problem, Hsu and 
Prausnitz23 employed a penalty function in the form: 

with r = 1 or 2. In our computations we have found that the introduction 
of penalty functions leads to little improvement in avoiding trivial solutions, 
and in many cases creates local extrema which trap the iterative procedure. 
Altena and Smoldersg have indicated that the use of a subroutine from the 
NAG library, requiring expressions for the first and second derivatives of 
the chemical potentials, avoids trivial solutions without the need of penalty 
functions. Likewise, difficulties arise in the calculations when one of the + I values becomes very small, causing the search routine to assume negative 
values and thus stoppage due to negative logarithmic arguments. 

To deal with these problems we have used the fact that for large portions 
of the binodals, polymer compositions in the dilute phase are near zero 
(Altena and Srnolder~,~ for example, have noted that +3,B can be as small 
as whereas in our calculations values as low as lopw result, which 
are of course physically meaningless). Also, in general, values of +3 ,B  are 
found to be closest to zero, relative to the other compositions for given tie 
lines, throughout the entire phase diagram. We therefore have selected +3,B 

as our independent variable because choice of any of the other five com- 
positions often leads to nonconvergence. We have also found added flexi- 
bility in working with the full five-unknown, five-equation system rather 
than the 3 x 3 system obtained from substitution of the material balance 
expressions. In order to avoid trivial solutions, initial guesses for the phase 
compositions must be close to the correct values, which is difficult to achieve 
for all tie lines. We therefore use results of a previous tie-line calculation 
(i.e., values of + & A ,  i = 1,2,3 and c $ ~ ~ ,  i = 1,2) as the initial guess for the 
succeeding calculation. Provided that distances between successive tie lines 
are not too large, such a scheme works well, and, if the initial guess for 
the first tie line is sufficiently accurate, the entire binodal curve can be 
generated without recourse to further guessing. In our algorithm, calcu- 
lations are started close to the polymer-nonsolvent line and proceed 
through the critical point, because in this region the miscibility gap is 
largest, thus more easily avoiding trivial solutions. 

Because for large portions of the dilute branch of the binodal curve, 
extremely small and physically meaningless polymer concentrations result, 
the calculation procedure can be simplified by assuming that the dilute 
phase contains zero polymer until the neighborhood of the critical point. 
Thus expressions for the chemical potential simplify to the following: 
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and 

where now g12 = g d 4 2 , ~ ) .  

eqs. (2) and (3) are used. Because this portion of the 
dilute branch of the binodal curve will fall on the solvent-nonsolvent line, 
+2,B is chosen as the independent variable, and +l,B is calculated from +l,E 

+ 4 2 , ~  = 1.0. Solving for the remaining three unknowns +<A (i = 1,2,3) 
then requires use of 

For h p 1 . B  and 

and 

Up to values of 43,B on the order of lop4, the accuracy (to within five digits) 
of the results is equal to that realized from solution of the original system 
of equations. In addition, calculations are less sensitive to the initial guess 
and on the order of two to three times faster. The algorithm starts from 
the solvent-poor side, using eqs. (17) and (18) to calculate tie lines, until the 
region of the critical point where the switch is made to the full system of 
equations, using the last calculated tie line as the initial guess from which 
to proceed. 

In the case of the spinodal curve, the same numerical procedure was 
employed with 43 as the independent variable, eliminating the other 
through the material balance. This leaves a single nonlinear equation to 
be solved. As in the case of the binodal curve, previous point values were 
used as first guesses for calculating successive values. Finally, calculation 
of critical points followed the same procedure employed to solve the si- 
multaneous equations described above. 

~ 

RESULTS AND DISCUSSION 

Constant Interaction Parameter 

For the case of constant interaction parameters, there are five quantities 
whose values need fixing (g12, gI3, g23, v 1 / v 2 ,  ~ 1 / ~ 3 ) .  In order to examine 
the phase diagram characteristics that are relevant to membrane formation 
processes, we have chosen arbitrary sets of values of these parameters 
consistent with typical NS-S-P systems to generate binodal and spinodal 
curves. In addition to the position and shape of the miscibility gap (binodal 
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curve), the relative position and shape of the spinodal gap is of importance 
in modeling membrane formation.4J0J1 Slopes of the tie lines are also con- 
sidered to be of some importance in the determination of overall porosities 
of membrane layers. 

Figure 1 shows two sets of binodal and spinodal curves and illustrates 
several general features characteristic of membrane-forming systems. The 
two sets of parameters used in this case are those for the water-acetone- 
cellulose acetate system as given by Altena and Smoldersg (gI2 = 0.5) and 
Cohen et a1.lo (g12 = -0.3). An important feature in both cases is the 
considerable change in the slopes of the tie lines that occurs over the two- 
phase region, with changes increasing as the miscibility gap increases. Sim- 
ilar behavior was seen for a range of parameter sets. Such behavior indicates 
that during the nonsolvent quench, the point of entry into the region of 
immiscibility as well as the total system composition (i.e., position on the 
ternary diagram) at which phase separation begins will have a strong bear- 
ing on the porosity of the precipitated layers. Calculation of the sequential 
buildup of porosity would require a knowledge of both the location and slope 
of the tie lines. In addition to the large quantitative difference in the two 
phase diagrams of Figure 1, an important qualitative feature shows up in 
the behavior predicted on the basis of the parameters from Ref. 10. Both 
the binodal and spinodal curves for this case exhibit a maximum in polymer 
concentration, and the same tie line passes through both points. Thus, for 
a polymer concentration above the maximum binodal point for this system, 
no amount of nonsolvent would lead to phase separation or entrance to the 
unstable region. 

For concentrations beneath the binodal maximum but above the spinodal 
maximum, entrance to the unstable region by further addition of nonsolvent 
would not be possible. Examination of Figures 3-5 in the Cohen et al. paper 
clearly shows that such maxima play a role in their predictions of porous 
membrane formation. 

P 

Fig. 1. Phase diagrams with several representative tie lines for water-acetone-cellulose 
acetate system. Binodal (-) and spinodal (--) curves: (a) g,, = -0.3, (b) glz = 0.5. Other 
parameters are v , / v ,  = 0.25, v 1 / v 3  = 0.002, g,, = 1.0, and gw = 0.2. 
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A behavior pattern similar to that illustrated by Figure 1 occurred for a 
wide range of interaction parameter values, several of which are illustrated 
in Figures 2-4. In each case the binodal and spinodal maxima, when they 
occurred, did so together, and a common tie line passed through each. The 
relative flatness of the spinodal maximum implies the existence of a large 
metastable region in the neighborhood of +3,max. Changes in the magnitudes 
of the interaction parameters shift the miscibility gap and therefore maxima 
locations; however, their existence is largely controlled by the value of g12. 
These figures illustrate that the sharpness of the maxima clearly increases 
with decreasing g,,, becoming most pronounced for negative values (max- 
ima were never observed for g,, > 0.05). Also, to some extent, increased 
g23 values lead to a small increase in the value ofg,,, needed for the existence 
of a maximum. One therefore concludes that a high affinity between the 
nonsolvent and solvent (low g12) can have important qualitative as well as 
quantitative consequences on the phase diagram. Such a result is in agree- 
ment with observations made in the literature regarding the importance 
of solvent-nonsolvent affinity in membrane formation. 

Another important pattern relates to the nonsolvent concentration nec- 
essary to cause precipitation for a given polymer concentration and its 
relation to membrane properties, a feature that has been studied experi- 
mentally.25,26 The behavior of + l , A  with changes in +3,A varies widely for 
different parameter sets as illustrated by Figures 3 and 4. For largely 
immiscible systems, the volume fraction of nonsolvent in the polymer-rich 
phase remains essentially constant over the major portion of the miscibility 
gap. In general, one would expect that for the main portion of the binodal 
curve, nonsolvent concentration at the cloud point would decrease with 
increasing polymer concentration. However, the opposite pattern more 
often occurs and is especially pronounced in cases where the polymer max- 
imum behavior is seen. On the other hand, systems showing a decrease in 
nonsolvent concentration with increasing polymer, though rare, do occur 
in cases where the miscibility is high as a consequence of large solvent- 
nonsolvent interactions (g,,), as shown in Figures 1 and 4. 

Fig. 2. Spinodal curves for various g,,: (a) g,, = -0.5, (b) g,, = -0.1 (c) g12 = 0.1. Other 
parameters are w , / w ,  = 0.25, v , /w,  = 0.002, g,, = 1.0, and g, = 0.2. 
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P 

Fig. 3. Binodal curves for various g,,: (a) g,, = 2.0, 03) g,, = 1.5, (c) g,,  = 0.7. Other 
parameters are v l / v 2  = 0.25, v1 /v3  = 0.002, g,, = -0.3, and g, = 0.2. 

The effect of polymer molecular weight on the phase diagram can be 
analyzed through variations of the quantity v I / v 3  and is illustrated in 
Figure 5 for the binodal, which is typical of that observed over a wide range 
of gij values. One sees that the polymer-rich branch is relatively insensitive 
to molecular weight until the polymer concentration drops below - 15%, 
after which the expected trend of increased miscibility with decreased mo- 
lecular weight occurs. At the same time, changes in the slopes of the tie 
line become significant in this region. Trends in the spinodal are roughly 
similar, except that the effects are somewhat larger. The effect of molecular 
weight on the critical point and, in particular, on the value of polymer 
volume fraction at the critical point, + 3 c ,  is important in controlling which 
phase precipitates (either the polymer-rich or the polymer-poor), thereby 
forming the discontinous phase. 27 Results for the polymer critical point are 
shown in Table I and illustrate that critical concentrations can drop dra- 

P 

Fig. 4. Phase diagrams showing binodal(-) and spinodal(--) curves and several tie lines 
for two sets of gij values: (a) g,, = 1.0, g,, = 1.0, g, = 0.5; (b) g12 = 0.0, g,, = 1.0, gB = 
0.0. Other parameters are v l / v z  = 0.2, v 1 / v 3  = 0.002. 
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Fig. 5. Binodal curves for two different molecular weights: (-) V , / V ~  = O.OOO1; (-*-) 
v1/v3 = 0.001. Other parameters are g,, = 0.3, xi3 = 1.0, and gB = 0.2. 

matically with increases in polymer molecular weight, whereas the effect 
on the solvent and nonsolvent concentrations is less pronounced. Table I1 
illustrates the less pronounced effects of the interaction parameters on the 
critical concentrations. One concludes, therefore, that molecular weight is 
indeed the controlling factor for + 3 c .  

Concentration Dependent Interaction Parameters 

As pointed out earlier, the principal reason for employing concentration- 
dependent forms for the interaction parameters has been to improve the 
accuracy of the phase diagrams predicted from Flory-Huggins theory. In 
our case, we have been concerned with the question of whether inclusion 
of concentration-dependent forms produces significant changes in the phase 
diagram and, if so, what effects this has on the qualitative features as well, 

TABLE I 
Effect of Molecular Weight on Critical Point Compositions 

A. g,, = -0.3, = 1.0, gm = 0.2, vi/V, = 0.25 

v1/v3 $lC $ZC $3 

0.01 
0.002 
0.001 
0.0001 

0.144 
0.106 
0.098 
0.085 

0.730 
0.832 
0.852 
0.900 

v1/v3 $1 $ z c  

0.126 
0.062 
0.045 
0.015 

be 
0.01 
0.002 
0.001 
o.OOO1 

0.439 
0.375 
0.359 
0.332 

0.459 
0.570 
0.601 
0.654 

0.102 
0.054 
0.040 
0.014 
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TABLE I1 
Effect of Interaction Parameters on Critical Point Compositions 

vlf v2 = 0.25, vl/ v3 = 0.002 

-0.5 0.046 0.899 0.055 0.7 0.717 0.241 0.042 
-0.2 0.061 0.882 0.057 1.0 0.375 0.571 0.054 
0.1 0.084 0.857 0.059 1.3 0.199 0.742 0.059 
0.4 0.122 0.819 0.059 1.6 0.119 0.823 0.058 
0.7 0.182 0.761 0.057 1.9 0.079 0.865 0.056 
1.0 0.263 0.690 0.047 2.2 0.056 0.890 0.054 

C. g1, = -0.3, g,, = 1.0 2.5 0.042 0,906 0.052 
~~~ 

ga 41 4 Z C  4ZC 
-0.5 0.254 0.698 0.048 
-0.3 0.217 0.732 0.051 
-0.1 0.176 0.770 0.054 
0.1 0.130 0.811 0.059 
0.3 0.081 0.854 0.065 
0.5 0.027 0.898 0.075 

such as shapes, slopes of the tie lines, etc. In our analysis of the available 
data on binary interaction pairs, we have been further motivated to develop 
an  understanding of which empirical forms fit the data best and what typical 
parameter ranges would be. In such a fashion, one can gain an  appreciation 
of the effect of the concentration dependence on the shape of the binodal 
and spinodal curves for typical membrane-forming systems. 

Because the swelling equilibrium method generally used to obtain inter- 
action-parameter data for nonsolvent-polymer pairs is limited to single 
values, 28 one obviously cannot generate information on the concentration 
dependence of gI3. We have thus assumed this parameter to be constant 
and therefore focus our attention in what follows on an  examination of the 
concentration dependencies of g12 and g23. 

Solvent-Nonsolvent Parameters 

Data for low-molecular-weight, binary systems are generally presented 
in the form of excess Gibbs energy, AGE, versus mole fraction and therefore, 
for our use, need to be converted to g12 versus volume fraction. The latter 
is easily done through the assumption of constant molar volume inherent 
in regular soluton theory. To convert AGE to g,, on the basis of “strictly 
regular” solution behavior, one would use the following relationship. 29,30 

AGE 
R T X I X ~  g 1 2  = (19) 

where the x i  represent mole fractions. On the other hand, if one assumes 
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that Flory-Huggins theory can be applied to solvent-nonsolvent systems, 
the following expression would result: 31 

Because the binary correlations are to be used for ternary-phase diagram 
calculations, they should be compatible with the limiting binary form ob- 
tained from the ternary equations (eqs. 2-4) for + 3  = 0. Equation (20) 
exhibits this character. Also in many cases, the actual AGE data have been 
obtained L’ing correlations, such as the Wilson equation, 32 which are based 
on nonregular solution theory. For these reasons, eq. (20) was taken as the 
preferred form for converting data. 

Although some authorsg have used up to five adjustable parameters to 
fit the g12 versus +, data, we feel that the limited number of data points, 
as well as empirically modified theory, does not warrant such a “high-order’’ 
fit. Our fits have therefore been limited to first- and second-order polyno- 
mials. Strictly for comparison purposes, we have also considered a three- 
parameter rational form given by: 

where y ,  /3, and y are empirical coefficients. This form was originally sug- 
gested by Koningsveld and K l e i n t j e n ~ ~ ~  on semitheoretical grounds for poly- 
mer-solvent systems. We have included it here as a proper limiting form 
for later comparison to our g23 calculations. In all cases, coefficients were 
determined via a modified Marquardt nonlinear regression algorithm. 

Table I11 shows the range of coefficients found for typical system fits and 
also gives an  indication of the suitability of a given correlation form. It is 
interesting to note that though eq. (21) is strictly applicable to polymer 
systems, it leads to a better fit than the polynomial form. 

Before proceeding to detailed illustrations of the effecets of the various 
forms in Table I11 on the ternary-phase diagram, we feel it worthwhile to 
clear up the discrepancy between our spinodal expressions and those of 
Altena and Smoldersg alluded to earlier in our footnote. Although these 
authors presented equations, no plots or discussion of spinodals has been 
given. Consequently we present in Figure 6 a comparison of the spinodal 
curves, using both equation sets together with the common binodal. One 
clearly sees that our set of equations leads quite properly to a coincidence 
of the binodal and spinodal curves at the critical point, wheras the spinodal 
calculated on the basis of the previous authors’ equations does not. Such 
behavior was seen for different g,, functions, and we therefore have con- 
cluded that an error must exist in their equations. 

Figures 7-10 illustrate several characteristics in the behavior of the 
binodal and spinodal curves resulting from use of the concentration-depen- 
dent g,, . For the first two cases listed in Table 111, the parabolic and rational 
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Fig. 6. Spinodal curves calculated (a) from this work, and (b) from the equation given in 
Ref. (9). Parameters are ul/uz = 0.2, u1/w3 = 0.002, g13 = 1.4, gz3 = 0.2, and g1z = 0.507 
+ , 0 5 7 ~ ~  + , 3 4 8 ~ ~ ~ .  Binodal curve is shown by dashed line. 

forms gave essentially similar results, whereas for H,O-acetone and H20-  
dioxane systems, slightly different behavior patterns resulted, as shown in 
Figure 7. In general, shapes of the binodals were less sensitive to the dif- 
ferent interaction-parameter correlations than were the tie-line slopes. 
Changes in the spinodals generally fell between the two. Figure 8 shows a 
comparison of phase diagrams calculated, respectively, with and without 
the two concentration-dependent forms, and clearly shows that a reasonably 
selected constant g,, yields a phase diagram very similar to the concen- 
tration-dependent case. Similar trends are true for the system illustrated 
in Figure 9. In this case, polymer maxima are again observed because g,, 
is negative over the range. 

P 

Fig. 7. Binodal curves based on H,O-acetone data for g12. Solid curve (-) for glz = 1.141 

~ 0 . 4 7 ~ ~  and associated tie line (a); broken curve (--I for g,2 = 0.661 + and 

associated tie line (b). Other parameters are v l / u 2  = 0.25, v , / v ,  = 0.002, g,, = 1.1, and g, 

0.417 
1 - 0.755~2 

= 0.4. 
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D 

Fig. 8. Binodal curves for (-) concentrationdependent g,, (g,, = 0.504 + 0.057~~ + 
0 . 3 4 8 ~ ~ ~ )  with associated tie lines (a); and for (--) constant g,, (g,, = 0.6) with associated 
tie lines (b). Other parameters are w l / v 2  = 0.2, w 1 / v 3  = 0.002, g,, = 1.0, and g, = 0.2. 

For the systems listed in Table I11 that are characterized by larger g,, 
values and stronger concentration dependencies, the agreement between 
the binodals calculated with and without constant g,, is not as close (as 
shown in Fig. 10). Generally speaking, we have found that agreement 
between phase diagrams calculated with and without concentration-depen- 
dent forms increases at the high-polymer end. And, except for the location, 
shapes of the binodal and spinodal curves are similar in both cases. Con- 
sequently, for modeling purposes, NS-S-P phase diagrams could be calcu- 
lated without serious error, using reasonably constant g,, parameters 
characteristic of the experimental range. 

P 

Fig. 9. Spinodal curves for (-) a concentrationdependent g,,, (glz = -0.218 - 0 . 8 6 1 ~ ~  + 
0 . 3 8 3 ~ ~ ~ )  and for two constant g,, values: (---) g,, = -0.55; (. . g,, = -0.7. Other parameters 
are w,/v2  = 0.2, v1/w3 = 0.002, g,, = 1.0, andg, = 0.2. 
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Fig. 10. Binodal curves for (-) a concentration-dependent g,, (glz = 1.141 - 0 . 4 5 7 ~ ~  + 
1 . 5 2 8 ~ ~ 2 )  and associated tie lines (a), compared to constant g,, = 1.1 (--) with associated tie 
lines (b), and constant g,, = 0.8 (.a .) with associated tie lines (c). Other parameters are v 1  / 
v ,  = 0.25, v l v 3  = 0.002, g,, = 1.1, andg, = 0.4. 

Solvent-Polymer Interactions 

Data for the concentration dependence of solvent-polymer interaction 
parameters are unfortunately quite limited. The tabulation by Orwoll l2 for 
a number of binary systems illustrates that relatively few values of g23 
have been obtained over reasonable ranges of concentration. These are listed 
in Table IV. As mentioned before, in consequence of the limited number 
of points in each case (typically four to eight) and inherent experimental 
difficulties limiting their accuracy, we chose to limit ourselves to empirical 
fits of low order for correlation. Likewise, the form mentioned earlier, sug- 
gested by Koningsveld and Kleintjens, was used. 

where now a, P,  and y are constants for the solvent-polymer system. The 
range of parameters resulting from the fits of these forms to the data of 
Table IV is given in Table V. 

A large number of phase-diagram calculations were carried out, from 
which we have been able to draw a number of important observations and 
conclusions regarding trends. From Table V, one sees that the interaction 
parameters do not in general exhibit uniform behavior with increasing 
polymer concentration, and, on the basis of the error criterion, preference 
for a particular form would not be obvious. On the other hand, for cases 
where the y parameter in eq. (22) is equal to or greater than unity, a 
discontinuity in g,, can occur somewhere in the range 0 I (p3 I 1. In 
addition, on the basis of the lattice one would expect y to fall 
between 0 and 1. Inspection of Table V shows that in five of nine cases, y 
> 1, whereas for the remaining four, it is less than zero. Thus on purely 
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Fig. 11. Phase diagrams showing (-) binodal curves and (--) associated spinodal curves 
for concentrationdependent g, = 0.201 - 0.4691$~ (curve a) and constant g, = 0.2 (curve b). 
Other parameters are v,/v2 = 0.25, v I / v ~  = 0.002, g12 = 0.5, and g13 = 1.0. 

empirical grounds, on the basis of these data the assumed form appears 
inconsistent. As further illustrated in Table IV, with the exception of the 
polyisobutene-n-pentane system, the lmited concentration range over which 
data are available means that one is necessarily extrapolating the func- 
tional forms for g,, in the generation of the complete phase diagram. Be- 
cause parabolic functions are generally inappropriate for extrapolation and 
too few data are available to justify third-order fits, we conclude that despite 
their relatively poor accuracy, linear functions are more appropriate for 
extrapolation. 

Figures 11 and 12 illustrate typical effects on the phase diagram resulting 
from use of the concentration-dependent g23 as compared to constant values. 
In many cases we found that regardless of the gz3 value chosen, it was not 

R 

Fig. 12. Binodal curves for (-) concentration-dependent g, = 0.099 + 1.15+3 - .3091$32 
with associated tie line (a); for (a -1 constant g, = 0.0 with associated tie line (b); and for 
(-.-) constant g, = 0.4 with associated tie line (c). Other parameters are v,/u2 = 0.21, 
v 1 / v 3  = 0.002, g,, = 0.8, and g13 = 1.4. 



NONSOLVENT-SOLVENT-POLYMER PHASE DIAGRAMS 1017 

P 

Fig. 13. 

g,, = 1.4. 

Binodals and associated tie lines for various gz3: (a) g, = 0.5, (b) g, = 0.1, (c) g, 
= 0.025 + 1.338+3. Other parameters are w , / w ,  = 0.25, w 1 / w 3  = 0.002, g,, = 0.8, and 

possible to obtain good agreement. As shown in Figure 11, shape differences 
as well as magnitude changes can in some cases be quite severe. One also 
sees the general feature that differences are greatest in the moderately low 
polymer range. In some cases, a constant value outside the actual experi- 
mental range is needed, as is seen, for example, in Figure 12, where the 
constant value of 0.0 for g,, is smaller than any actually measured for that 
system. 

Comparison of Figures 13 and 14 illustrates that shape changes are more 
pronounced for the spinodal curves. Consequently, the use of accurate con- 
centration-dependent forms for the solvent -polymer system becomes crit- 
ical if one requires a knowledge of the spinodal for the membrane-formation 
process calculation. 4~10 

Fig. 14. Spinodal curves for various gZ3:  (a) g,, = 0.928 - [1.409/(1 + 6.252+3)], (b) g23 = 

0.025 + 1.338+3, (c) g,, = 0.5, (d) g,, = 0.0. Other parameters are w , / w ,  = 0.25, w I / w 3  = 
0.002, g,, = 0.8, g13 = 1.4. 
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CONCLUSIONS 

These results show the critical role of the concentration dependence of 
the solvent-polymer interaction parameter in affecting the nature of the 
predicted miscibility gap. These calculations further indicate that, until 
data covering wider concentration ranges are available, the use of a linear 
form for g,, is considered the most defensible. Contrary to the conclusion 
of a previous study,g we have shown that the concentration dependency of 
the solvent-polymer interaction parameter is more important in the control 
of the phase diagram behavior than that of the nonsolvent-solvent param- 
eter. 
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